LS Engines

LZ1 6.0L Engine Upgrade Guide: Expert Advice for LZ1 Engine Mods to Maximize Performance

ProCharger_LS_Transplant_Serpentine_Supercharger_Underhood_1
(Image/ProCharger)

[Editor’s Note: This LZ1 engine upgrade guide is the second in a series of LS engine upgrade guides assembled by a team of LS experts at Summit Racing. The LZ1 engine is a Gen IV, 6.0L aluminum-block V8 truck engine that first appeared in 2010-13 GM trucks and SUV’s. The LZ1 was packed with technology. For a primer on the LS engine universe, read LS Engines 101: An Introductory Overview of the Gen III/IV LS Engine Family.]

The LZ1 is a Gen IV, 6.0L, aluminum block truck engine. It was the most advanced of the Cathedral port engines with AFM, VVT, and Flex Fuel capability. It made 332 horsepower and 367 foot-pounds of torque.

Like it’s predecessor, the LFA, it was a dual-mode hybrid for GM, meaning it could run electric-only at low speeds.

The engine itself is similar to other Gen. IV engines, but it was augmented by two 80-hp, 184 ft./lb. torque electric motors. The engine itself is similar to other Gen. IV engines, but it was augmented by two 80-hp, 184 ft./lb. torque electric motors. They are contained inside the transmission and feed its planetary gear set. Along with its 300-volt battery, this bumped fuel economy 25 percent versus the standard model.

[Every engine spec you’ll need for an LZ1 project can be found here: LZ1 Engine Specs: Performance, Bore & Stroke, Cylinder Heads, Cam Specs & More.]

How to Tell the Difference Between LZ1 and Other Engines

At first glance, these engines look very similar. The easiest way to tell them apart is to check the 8th digit of the VIN code.

If you don’t have the VIN, you will need to look closer. Unlike the LS2 or LS3, it will have the ribbed AFM valley cover. The aluminum block is cast with 6.0 on the back right hand side and it has a casting number 12568952. The cylinder heads will have 799 castings similar to those used on the LS6. Because of its Cathedral port heads and aluminum block, it’s sometimes used as a replacement for an LS1 or LS6. Keep in mind, this requires a Lingenfelter crank sensor trigger conversion.

If you have an LZ1 and are on the hunt for the best mods, you’re in the right place. Here’s the roadmap to upgrading your LZ1 power plant to achieve maximum performance.

Intro to LZ1 Truck Engine Upgrades

For many people, upgrading the LZ1 starts off with a cold air intake kit.

The factory exhaust system is restrictive in an effort to reduce the drone while in 4-cylinder mode. A set of headers and an aftermarket exhaust system will make more power, but the drone can become obnoxious. So how do we deal with that? Easy, we tune it out with an AFM disabler or increase overall performance with a programmer.

The factory tune was conservative.

We recommend that you talk with your local chassis dyno tuner to choose a computer programmer. Here are some of the benefits:

  • Tune out AFM activation.
  • Correct the fuel curve.
  • Increase the ignition timing tables for higher octane fuel.
  • Raising the factory redline will keep your vehicle in the meat of the powerband longer.
  • Raise shift points and firmness.
  • Shut off torque limiting.

Getting a tune makes it easier to dial in a bigger cam and injectors later. Before going to the tuner, we recommend installing a colder thermostat to open up the tuning window.

Below are other upgrades you can make to improve the performance of an LZ1 engine.

[Trying to find an LS engine for a swap or build? Check out Part 1 and Part 2 of our LS Spotter’s Guide.]

Upgrading the LZ1 Camshaft and Valvetrain

(Image/GM EFI Magazine)

As we mentioned earlier, the engine came with AFM—which is known to fail.

If your engine is in good running condition now, you can install an AFM disabler. If a lifter is already failing, it’s best to go with an AFM delete kit.

And if you’re in this deep, why not put a truck cam in it?!

For more on that, read: How to Delete or Disable Active Fuel Management (AFM) on GM Engines.

The next thing to decide is whether you want to maintain VVT.

Although not commonly used for all-out racing, VVT widens the powerband in a street-driven vehicle. If that sounds good, a VVT limiter kit and VVT cam is just what you need.

What are the downsides to VVT?

More serious cams often require 400 lbs. of valve spring open pressure. This makes it hard for the phaser to actuate. In addition, tuning VVT is a little more complex. If you don’t want to deal with that, a VVT delete kit is an option. It opens the door to a wide selection of camshafts.

Generally, 3-bolt cams are more common and just requires the addition of a 3-bolt 4-pole upper gear to convert it over.

If you’re still driving daily, cams generally range from 205 to 220 degree intake-duration range.  The smaller ones can be tuned to idle nearly stock and still provide good mileage.

Cams in the 220-226 range are a little more serious, but are still easy to tune, and driveability is still good.

What if you already have a power adder?

Generally, supercharger cams and nitrous cams will have slightly more lobe separation and longer exhaust duration. Turbo cams reduce overlap with less exhaust duration split in relation to the intake.

Intake Duration (@ 0.050 in.)Horsepower at the wheels after bolt-onsIdle QualityNotes
200° (Stock)300-310 whpSmooth
215°+60 hpSlightly noticeableGood with auto and stock converter.
220° - 230°+80 hpSteady lopeConverter recommended. Still can drive daily.
230° - 240°+110 hpLopeyFly-cutting the pistons may be required. Heads and intake good for another 40+ hp.

Spring kits are available for typical 0.600 in. lift cam upgrades. Titanium retainers are another upgrade that will reduce valve float.

The stock rockers are good up to 175 lbs. of seat pressure and 450 lbs. open. You will want to install a trunnion kit for added reliability.

Tech Tip: When you’re pulling the cam, switch out the spring-loaded timing chain tensioner for the more-reliable wedge-style (early) LS2 damper.

Here are a few parts commonly used for an LZ1 cam swap: LS2 timing chainLS7 spec liftersLS2 timing chain damper, and 11/32 thick-wall chromoly pushrods.

Adding an LZ1 Supercharger or Nitrous Oxide System

LS2 NOS
(Image/Power and Performance News)

LZ1 engines are a popular choice for people that want to stay naturally aspirated, but if you do decide to boost, here are a couple of things to address:

  • 4-corner steam kit reduces hot spots that can cause the rings to butt and snap the piston’s ring lands.
  • The 37 lb. fuel injectors will only support around 450 whp which is where most power-adders are just getting started. We’ve addressed those in the next section on fuel system upgrades.

Okay, here’s the fun stuff:

  • nitrous kit (at low settings) is great for street driving with stock internals. Up to a 200-shot is common. Keep in mind the tight piston ring gap is the limiting factor beyond that. If you’re wanting to get serious, a single-plane intake is less prone to break from a nitrous backfire. A plate system has better distribution than the original intake, but an eight-nozzle fogger system is even better. Running higher octane fuel is advised.
  • Turbo kits are everywhere. The least-expensive kits start with the factory exhaust manifolds feeding twins in the trans tunnel area. From there you will find tubular manifold kits with the turbo’s placed in the front upper corners of the engine bay. Horsepower increases start at 600 whp and goes up from there. Common street kits are capable of 1000+ whp with the right fueling and well-built engine.
  • Roots-style supercharger is dependable and makes great torque in the low- and mid-rpm range. It’s so good that GM used one on their own LSA-powered ZL1. Horsepower ranges from 520-700 whp with higher levels of boost.
  • centrifugal-style supercharger is lightweight and makes more power at high rpm. This is partially due to a larger intercooler mounted in front of the radiator. They don’t have quite the curb appeal of a Roots, but make great power.

Upgrading the LZ1 Fuel System and Tuning

The LZ1 came with 37-lb. injectors that can support roughly 450 whp.  A common upgrade is the L96 injector. It bolts in and flows close to 40 percent more fuel. Fuel injector characterization info is widely available, but you’ll still want to talk to your tuner about it before the swap.

YearPart NumberFlow @ 58 PSIConnectorLength (Inches between O-rings)Approx. WHP Limit
2009-14LC9/LMG/LZ1/LMF/L20/LH9 1261341137 lbs.USCAR EV61.730 in.515
2010-17L96 1261341249.2 lbs.USCAR EV61.730 in.615

The fuel pump becomes an issue around 520 whp. The first option is to maintain or increase pump pressure with electronic voltage controllers and hotwire kits. From there, the ZL1 pump will drop into the factory tank and supports roughly 650 whp. When running boost, you can use a water-methanol system to supply extra fuel and lower charge air temps.

Upgrading the LZ1 Intake Manifold and Throttle Body

(Image/Super Chevy)

GM really did its homework with the factory intake and throttle body. Below 6000 rpm, it’s unbeatable with the exception of the Edelbrock Cross-Ram. There are some applications where other intakes make sense.

A standard runner length FAST LSXRT manifold makes a few more horsepower, but some of that comes from the addition of a larger throttle body.

How about a single plane intake? There are two main reasons to do this. One is a carb swap and using the MSD ignition controller.

What would be more common is the guy that really loves his nitrous. The square bore plate style systems have better distribution to the individual cylinders than the LZ1 intake. This and the added strength would make it a good fit for this application. It will make another 20 hp at 7000 rpm, but the crossover doesn’t occur until 6500 rpm and it will consistently be down 30 ft.-lbs. of torque from idle to 5500 rpm.

Not afraid of hood scoops and 7000+ rpm? The taller Tunnel Rams will lose up to 30 ft.-lbs. torque below 5000 rpm. Horsepower matches at 6000 rpm and the Tunnel Ram will add another 25 hp by 7000 rpm.

Whichever direction you go, be sure to ask your tuner about going with a speed density tune. Doing so will remove the MAF restriction and give you more power.

Upgrading LZ1 Cylinder Heads

The LZ1 cylinder heads are similar to the LS6 heads except they used a heavier solid stem intake valve.

  • The stock heads can be CNC-ported for more airflow. Flow numbers can be as high as 323 cfm at .700 lift. Lightweight hollow-stem LS3 valves will can be cut to 2.040 to fit the factory valve seat. Between the light valves and better springs, the engines will pull cleanly to 7000 rpm. If you’re looking to boost to 800+ hp; a heavy-duty aftermarket stainless intake valve is a bit tougher and won’t tulip as quickly from the heat. Milling the heads .030 will bump compression to 11.3:1 and will increase power everywhere. Piston-to-valve clearance will be tight with cams beyond 230 at .050 in. of intake duration.
  • A better option is aftermarket heads. They reduce downtime, they’re all-new, and you can usually offset the added cost by selling your original heads. Valve angles are typically laid over to 13.5 degrees for increased piston-to-valve clearance. They flow better and the cross-sections are great for naturally aspirated or boosted engines. When comparing heads, look at the .400 in. lift numbers as a general indicator of how the heads will perform. With a medium-sized cam, 500+ whp (naturally aspirated) is a goal that is easily met.

Upgrading the LZ1 Rotating Assembly

On the LZ1 engine, pistons are the weak link and you probably already know someone who has popped one.

A set of forged pistons is a good idea and you can increase compression while you’re at it.

They have stronger wristpins, thicker ring lands, and the added valve reliefs allow you to run big cams. If you’re going over 1000 hp, or use a 300+ shot of nitrous, using a set of .200 wall tool-steel pins is a good idea.

The LZ1’s Gen. 4 rods are stronger than the Gen. 3 rods and have full floating pins. They can handle about 800 hp and 7000 rpm in boosted applications (at least for a while). They are likely to bend before they break when subjected to real track conditions.

If you’re getting forged pistons, upgrade to forged connecting rods at the same time. Big 7/16-inch rod bolts will go a long way to keep things together over 7000 rpm.

The LZ1 crank was cast but strong. The main reason for a stroker crank is added cubic inches. With heads and manifolds available that breathe well above 7000 rpm, more cubes can bring the power peak back into hydraulic roller territory for more power under the curve.

Performance rotating assemblies are available in many combinations.

A couple notes of caution when stroking the engine:

  • The 6.0L aluminum blocks had slightly longer cylinder sleeves than the iron blocks (5.500 in. vs. 5.430 in. on average). When running a stroker crank, much of the piston skirt drops out of the bottom of the cylinder at BDC. The best piston manufacturers have compensated for this by eliminating skirt taper until a point well above where it meets the bottom of the cylinder sleeve at BDC. Any skirt taper at this intersection acts as a razor blade and will quickly wear out the piston. This is especially true with a 4.100 or longer stroke, and the piston design is critical to long life.
  • The blueprint deck height of the block is 9.240 in. It’s best to measure deck height before ordering your rotating assembly. Thicker head gaskets or using an aftermarket 6.098-6.100 in. rod will ensure enough piston-to-head clearance.
Engine SizeBore Dia.Piston Comp. HeightStrokeRod LengthWristpin Dia.
LZ1 6.0L
(364 c.i.d. Stock)
4.000 in.1.338 in.3.622 in.6.098 in.0.943 in.
6.0L to 6.7L (408 c.i.d.)4.030 in.1.110 in.4.000 in.6.125 in.0.927 in.

Upgrading the LZ1 Engine Block

LZ1 engines have a 4.000-inch bore diameter.

The cylinders can be bored to 4.030 inch. However, we recommended leaving them as thick as possible when running boost.

You can make 850 whp with a couple of simple upgrades like head studs and LS9 head gaskets. Race gas, E-85, or water-methanol injection is required.

The factory main caps aren’t doweled. It’s better to reduce ignition timing and compensate with added boost to reduce the cylinder pressure spikes that can lift heads and cause the main caps to dance.

Main studs should be added anytime you’re this deep in the engine.

(Information for this article originally appeared in this Upgrading the Gen. 4, 6.0L, LS Car Engines article at Summit Racing’s searchable database of FAQ tech infoGo there and search “LS engines” for a comprehensive collection of LS engine tech information.)

Tags: , , , , ,

One Comment

  1. great information I am in the process of modifying my 2011 6.0 into a 1956 Chevy step side pick up

Leave a Reply

Your email address will not be published. Required fields are marked *

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.